Global surface slopes and roughness of the Moon from the Lunar Orbiter Laser Altimeter
نویسندگان
چکیده
[1] The acquisition of new global elevation data from the Lunar Orbiter Laser Altimeter, carried on the Lunar Reconnaissance Orbiter, permits quantification of the surface roughness properties of the Moon at unprecedented scales and resolution. We map lunar surface roughness using a range of parameters: median absolute slope, both directional (along‐track) and bidirectional (in two dimensions); median differential slope; and Hurst exponent, over baselines ranging from ∼17 m to ∼2.7 km. We find that the lunar highlands and the mare plains show vastly different roughness properties, with subtler variations within mare and highlands. Most of the surface exhibits fractal‐like behavior, with a single or two different Hurst exponents over the given baseline range; when a transition exists, it typically occurs near the 1 km baseline, indicating a significant characteristic spatial scale for competing surface processes. The Hurst exponent is high within the lunar highlands, with a median value of 0.95, and lower in the maria (with a median value of 0.76). The median differential slope is a powerful tool for discriminating between roughness units and is useful in characterizing, among other things, the ejecta surrounding large basins, particularly Orientale, as well as the ray systems surrounding young, Copernican‐age craters. In addition, it allows a quantitative exploration on mare surfaces of the evolution of surface roughness with age.
منابع مشابه
The steepest slopes on the Moon from Lunar Orbiter Laser Altimeter (LOLA) Data: Spatial Distribution and Correlation with Geologic Features
We calculated topographic gradients over the surface of the Moon at a 25 m baseline using data obtained by the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter (LRO) spacecraft. The relative spatial distribution of steep slopes can be reliably obtained, although some technical characteristics of the LOLA dataset preclude statistical studies of slope orien...
متن کاملLunar topographic roughness maps from Lunar Orbiter Laser Altimeter (LOLA) data: Scale dependence and correlation with geologic features and units
We present maps of the topographic roughness of the Moon at hectometer and kilometer scales. The maps are derived from range profiles obtained by the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter (LRO) spacecraft. As roughness measures, we used the interquartile range of profile curvature at several baselines, from 115 m to 1.8 km, and plotted these in...
متن کاملLunar Observer Iaser Altimeter Observations for Lunar Base .- Site Selection
One of the oqtical datasets for optimal selection of future lunar lana_ng sites is local, to regional-scale topography. Lunar base site selection will require such data for hoth engineering and scientific olX,rations purposes. The Lunar Geosctence Orbiter or Lunar Obsert_or is the ideal precursory science mission from which to obtain this required information. We suggest that a simple laser alt...
متن کاملNew observational evidence of global seismic effects of basin-forming impacts on the Moon from Lunar Reconnaissance Orbiter Lunar Orbiter Laser Altimeter data
[1] New maps of kilometer-scale topographic roughness and concavity of the Moon reveal a very distinctive roughness signature of the proximal ejecta deposits of the Orientale basin (the Hevelius Formation). No other lunar impact basin, even the just-preceding Imbrium basin, is characterized by this type of signature although most have similar types of ejecta units and secondary crater structure...
متن کاملSummary of the results from the lunar orbiter laser altimeter after seven years in lunar orbit
In June 2009 the Lunar Reconnaissance Orbiter (LRO) spacecraft was launched to the Moon. The payload consists of 7 science instruments selected to characterize sites for future robotic and human missions. Among them, the Lunar Orbiter Laser Altimeter (LOLA) was designed to obtain altimetry, surface roughness, and reflectance measurements. The primary phase of lunar exploration lasted one year, ...
متن کامل